Training activation function in parametric classification

نویسندگان

  • Valentina Colla
  • Leonardo Maria Reyneri
  • Mirko Sgarbi
چکیده

This w ork shows how to train the activation function in neuro-wavelet parametric modeling and how this improves performance in a number of modeling, classi cation and forecasting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل ممیز غیرپارامتریک بهبودیافته برای دسته‌بندی تصاویر ابرطیفی با نمونه آموزشی محدود

Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...

متن کامل

Training Activation Function in Neuro-Wavelet Parametric Modeling

This work describes how to train the activation function in neuro-wavelet para-metric modeling. Training activation function signiicantly improves performance in a number of modeling, classii-cation and forecasting problems. Three diierent case studies from as many different application domains are considered and their performance compared with non-trained activation functions.

متن کامل

Siamese Networks for One Shot Learning using Kernel Based Activation functions

The lack of a large amount of training data has always been the constraining factor in solving a lot of problems in machine learning, making One Shot Learning one of the most intriguing ideas in machine learning. It aims to learn information about object categories from one, or only a few, training examples, and for certain image classification tasks, has successfully been able to get results c...

متن کامل

Exemplar-centered Supervised Shallow Parametric Data Embedding

Metric learning methods for dimensionality reduction in combination with k-Nearest Neighbors (kNN) have been extensively deployed in many classification, data embedding, and information retrieval applications. However, most of these approaches involve pairwise training data comparisons, and thus have quadratic computational complexity with respect to the size of training set, preventing them fr...

متن کامل

Measurement selection for parametric IC fault diagnosis

This paper describes experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined. 1 Introduction An integrated circuit test is specified by a combination of input and output sign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000